Zero-Sum Flows in Regular Graphs
نویسندگان
چکیده
For an undirected graph G, a zero-sum flow is an assignment of non-zero real numbers to the edges, such that the sum of the values of all edges incident with each vertex is zero. It has been conjectured that if a graph G has a zero-sum flow, then it has a zero-sum 6-flow. We prove this conjecture and Bouchet’s Conjecture for bidirected graphs are equivalent. Among other results it is shown that if G is an r-regular graph (r ≥ 3), then G has a zero-sum 7-flow. Furthermore, if r is divisible by 3, then G has a zero-sum 5-flow. We also show a graph of order n with a zero-sum flow has a zero-sum (n+ 3)-flow. Finally, the existence of k-flows for small graphs is investigated. ∗
منابع مشابه
Zero-Sum Flow Numbers of Regular Graphs
As an analogous concept of a nowhere-zero flow for directed graphs, we consider zero-sum flows for undirected graphs in this article. For an undirected graph G, a zero-sum flow is an assignment of nonzero integers to the edges such that the sum of the values of all edges incident with each vertex is zero, and we call it a zero-sum k-flow if the values of edges are less than k. We define the zer...
متن کاملA Note on Zero-Sum 5-Flows in Regular Graphs
Let G be a graph. A zero-sum flow of G is an assignment of non-zero real numbers to the edges such that the sum of the values of all edges incident with each vertex is zero. Let k be a natural number. A zero-sum k-flow is a flow with values from the set {±1, . . . ,±(k − 1)}. It has been conjectured that every r-regular graph, r ≥ 3, admits a zero-sum 5-flow. In this paper we give an affirmativ...
متن کامل0-Sum and 1-Sum Flows in Regular Graphs
Let G be a graph. Assume that l and k are two natural numbers. An l-sum flow on a graph G is an assignment of non-zero real numbers to the edges of G such that for every vertex v of G the sum of values of all edges incident with v equals l. An l-sum k-flow is an l-sum flow with values from the set {±1, . . . ,±(k − 1)}. Recently, it was proved that for every r, r > 3, r 6= 5, every r-regular gr...
متن کاملCubic Graphs without a Petersen Minor Have Nowhere–zero 5–flows
We show that every bridgeless cubic graph without a Petersen minor has a nowhere-zero 5-flow. This approximates the known 4-flow conjecture of Tutte. A graph has a nowhere-zero k-flow if its edges can be oriented and assigned nonzero elements of the group Zk so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph. An equivalent definition we get...
متن کاملThe sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 26 شماره
صفحات -
تاریخ انتشار 2010